
Model-based GUI testing using Uppaal at

NOVO Nordisk

Ulrik H. Hjort2, Jacob Illum1, Kim G. Larsen1, Michael A. Petersen2, and
Arne Skou1

1 Department of Computer Science, Aalborg University, Denmark
2 NOVO Nordisk A/S, Hillerød, Denmark

Abstract. This paper details a collaboration between Aalborg Univer-
sity and NOVO Nordisk in developing an automatic model-based test
generation tool for system testing of the graphical user interface of a
medical device on an embedded platform. The tool takes as input an
UML Statemachine model and generates a test suite satisfying some
testing criterion, such as edge or state coverage, and converts the in-
dividual test case into a scripting language that can be automatically
executed against the target. The tool has significantly reduced the time
required for test construction and generation, and reduced the number
of test scripts while increasing the coverage.

1 Introduction

Model-based development (MBD), [5], is a recent and very promising approach
to industrial software development addressing the increasingly complex world
of making correct and timely software. Although originally developed for gen-
eral software systems, MBD has demonstrated great potential within embedded
system and in particular safety critical systems for which failures after field de-
ployment are unacceptable, either due to the catastrophic consequences of such
failures or the impossibility of updating the software after deployment. MBD
techniques address these problems by working with precise mathematical mod-
els of the software system and using these models for e.g., formal verification of
correctness, automatic code generation, and/or automatic test generation.

The benefits from working with models are numerous: Models are easier to
communicate and more precise than textual specifications; models allow for fast
prototyping as models can be simulated effortlessly; correctness of the model can
be established mathematically; with automatic code generation, manual labor is
minimizes assuring faster time to market and less bugs.

The world of model checking has always been a strong proponent for building
models and specifications for hardware and software systems and the research
field is offering many methods for establishing model correctness. Recently, algo-
rithms and methods from model checking have been extended to other types of
model analysis such as automatic controller synthesis, [4, 6], and optimal plan-
ning and scheduling, [1, 3]. The latter turns out to be particularly applicable for

automatic test suite generation, as finding a smallest possible test suite satisfying
some coverage criteria is, simply, a planning or scheduling problem.

In this paper, we describe the development of a tool chain for adapting model-
based model checking, planning and scheduling techniques to the application
of automatic test suite generation. The technology underlying the tool chain
is provided by Aalborg University, who with their widely recognized model-
checking tool Uppaal, [2], has made numerous significant contribution to the
field of model checking. The case for the tool chain is testing graphical user
interfaces on an embedded platform and provided by the large Danish health care
company NOVO Nordisk A/S. Worldwide, NOVO Nordisk employs more than
27,000 employees spread over 81 countries. NOVO Nordisk is a world leader in
diabetes care, but their business areas also stretch into haemostasis management,
growth hormone therapy and hormone replacement therapy.

The remainder of the paper is structured as follow: In Section 2 we pro-
vide a short introduction to Uppaal. In Section 3 we detail the case for the
collaboration, and we finally conclude with our experiences from this work.

2 The Uppaal model checker

Uppaal is a tool for design, simulation and model checking (formal verification)
of real-time systems modeled as networks of timed automata extended with
discrete datatypes and user-defined functions. Based on more than a decade of
research, Uppaal provides very efficient algorithms and symbolic datastructures
for analysing such models.

Since the release of Uppaal in the mid-nineties, several variants have emerged,
realizing the strength of both timed automata as a modeling language for real-
time behavior and the efficiency of Uppaal’s symbolic model checking engine.
Such variants include3:

– Uppaal Tiga: Automatic synthesis of controllers for real-time systems. The
modeler provides a model of the environment together with a model of all
possible behavior of the controller. Using the model and providing a control
objective, Uppaal Tiga is able to automatically synthesis a controller that
guarantees the objective.

– Uppaal Cora: Optimization engine for resource-constrained problems such
as planning and scheduling problems. Given a resource-constrained problem
with many potential solutions, Uppaal Cora is able to find the optimal or
swiftly generate near-optimal solutions to the problem.

– Uppaal Tron: Engine for online testing of real-time systems. Online testing
differs from regular testing in the sense that the model of the systems is
executed in parallel to actual system implementation. The purpose of the
executing model is to stimulate the implementation with legal inputs and
observe the behavior to establish whether the implementation adheres to the
model.

3 All the tools are available from http://www.uppaal.com

– Uppaal Pro: Analysis of real-time systems showing probabilistic behavior.
Uppaal Pro takes as input a model of a real-time system with uncertainty
and is able compute the probability of the model satisfying some criterion.

– Times: Schedulability analysis of real-time systems. Times is able to estab-
lish schedulability of task and resource systems where the tasks are modeled
as timed automata.

3 The Case Study: GUI Testing

The purpose of this collaborative work between Aalborg University and NOVO
Nordisk has been to develop a test generation tool for system testing of graphical
user interfaces using the Uppaal model checking tool.

The company is developing the hardware and software of an embedded de-
vice for medical purposes. This device has a graphical user interface to receive
instructions from and provide feedback to the user. The software department
at NOVO Nordisk has the assignment of system testing the GUI to determine
whether all interactions work appropriately and that the expected information is
displayed on the screen. The specification of the behavior is traditionally made
in Microsoft Visio to provide a graphical representation that can be used in the
review process as well as for implementation.

The process for the system testers is to look at the Visio drawings and man-
ually generate a set of test cases that cover the behavior of the GUI and validate
that the output is correct. These tests need to be reviewed and accepted, be-
fore they are finally converted to a scripting language that can automatically be
executed against the platform. This process is depicted on the left of Figure 1.

1. Model GUI structure
using MS Visio

2. Manually design covering
test cases

3. Review test cases 4. Generate test cases
in scripting language

5. Execute tests

1. Model GUI structure in
Rational Systems Developer

as UML Statemachines

2. Export model to
XMI format

3. Covert UML model
to Uppaal model

4. Automatically generate
test suite according to

coverage criteria using Uppaal

5. Export tests to
scripting language

6. Execute tests

Fig. 1. Old (left) and new (right) testing process.

This approach has a number of drawbacks, namely, that 1) manual creation
of test cases is tedious, 2) establishing whether the test cases do in fact cover
the model is difficult, 3) changes to the model require the entire process to be
repeated.

By introducing model-based testing in this process, we can alleviate these
drawbacks by removing the manual task of test generation and test review,

knowing that the output of the automatic process is mathematically guaranteed
to cover the model. And finally, since the technology is fully automated, changes
to the model are reflected in the test cases by the push of a button.

To ease the transition to model-based GUI specifications, we have chosen
UML Statemachines as an input model since 1) UML is an establish standard
familiar to most developers and thus requires minimal re-education, 2) NOVO
Nordisk has the software infrastructure in place to support the building of UML
models, 3) the UML Statemachine notion is very similar to the current Visio
models thus maintaining the current validation process.

To accommodate this choice, it has been necessary to adapt Uppaal to accept
UML Statemachine models. This has been accomplished by using the XML-like
UML exchange format called XMI, which is converted into a Uppaal model.
The engines of Uppaal and Uppaal Cora are then applied to the models and
used to generate a test suite with either edge or state coverage. The resulting
test cases are, finally, converted into the scripting language that can be executed
on the target. This new process is depicted to the right of Figure 1.

4 Conclusion

Using the automated testing tool has reduced the time used on test construction
from upwards of 30 days to 3 days spent modelling and then a few minutes on
actual test generation. The benefits extend into the specification process, as the
model structure is used for specifications and later refined with action code to
allow for automatic test generation. This removes the process of keeping specifi-
cations and test models consistent, an otherwise tedious and error-prone process.
Furthermore, the testing tool has decreased the number of test case while at the
same time increasing and guaranteeing full model coverage. The automatically
generated test scripts have uncovered a number of bugs in the software, even
“difficult” bugs that can be hard to detect, since the test generation process
makes no assumptions about how the system should be used; something testers
have a tendency to do.

The company has experienced that creating usable models for test generation
requires time, however, once the model has been generated making changes,
extensions, and doing maintenance is easy. Finally, the fact that specification
changes are immediately reflected in the test suite has proved extremely helpful.

In conclusion, the collaboration has been very successful and beneficial to
both company and university.

References

1. G. Behrmann, E. Brinksma, M. Hendriks, and A. Mader. Scheduling lacquer produc-
tion by reachability analysis – a case study. In Workshop on Parallel and Distributed

Real-Time Systems 2005, pages 140–. IEEE Computer Society, 2005.
2. Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL. In

Formal Methods for the Design of Real-Time Systems, volume 3185 of LNCS, pages
200–236. Springer, 2004.

3. Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal scheduling
using priced timed automata. ACM SIGMETRICS Perform. Eval. Rev., 32(4):34–
40, 2005.

4. Franck Cassez, Jan J. Jessen, Kim G. Larsen, Jean-François Raskin, and Pierre-
Alain Reynier. Automatic synthesis of robust and optimal controllers - an industrial
case study. In HSCC, volume 5469 of LNCS, pages 90–104. Springer, 2009.

5. David S. Frankel. Model Driven Architecture: Applying MDA to Enterprise Com-

puting. John Wiley & Sons, 2003.
6. Jan Jakob Jessen, Jacob Illum Rasmussen, Kim Guldstrand Larsen, and Alexandre

David. Guided controller synthesis for climate controller using uppaal tiga. In
FORMATS, volume 4763 of LNCS, pages 227–240. Springer, 2007.

